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Multipoint Linkage-Disequilibrium–Mapping Approach Based on the
Case-Parent Trio Design
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In the present study we propose a multipoint approach, for the mapping of genes, that is based on the case-parent
trio design. We first derive an expression for the expected preferential–allele-transmission statistics for transmission,
from either parent to an affected child, for an arbitrary location within a chromosomal region demarcated by several
genetic markers. No assumption about genetic mechanism is needed in this derivation, beyond the assumption that
no more than one disease gene lies in the region framed by the markers. When one builds on this representation, the
way in which one may maximize the genetic information from multiple markers becomes obvious. This proposed
method differs from the popular transmission/disequilibrium test (TDT) approach for fine mapping, in the following
ways: First, in contrast with the TDT approach, all markers contribute information, regardless of whether the parents
are heterozygous at any one marker, and incomplete trio data can be utilized in our approach. Second, rather than
performing the TDT at each marker separately, we propose a single test statistic that follows a x2 distribution with
1 df, under the null hypothesis of no linkage or linkage disequilibrium to the region. Third, in the presence of linkage
evidence, we offer a means to estimate the location of the disease locus along with its sampling uncertainty. We
illustrate the proposed method with data from a family study of asthma, conducted in Barbados.

Introduction

Association studies of candidate genes are commonly con-
ducted in the field of genetic epidemiology, using both
case-control and case-parent trio designs. Association
studies have also been promoted for fine mapping after
chromosomal regions for a disease gene have been iden-
tified by linkage analysis (Ott and Hoh 2000). Although
either population-based or family-based association stud-
ies can be adopted, the latter has the advantage of avoid-
ing the potential problem of population stratification,
which can lead to spurious results (e.g., see Falk and Ru-
binstein 1987; Ott 1989; Spielman et al. 1993; Thomson
1995). More recently, Risch and Merikangas (1996) ad-
vocated the use of family-based association studies along
with the transmission/disequilibrium test (TDT) (Spiel-
man et al. 1993), for genomewide scans. Under the as-
sumptions of (1) multiplicative models for penetrances of
genotypes at a disease locus and (2) that the actual variant
of this disease locus is being considered, Risch and Mer-
ikangas (1996) showed that this association study/TDT
method has more statistical power to detect genes of mod-
est effect than does the conventional affected-sib-pair
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(ASP) design based on identical by descent (IBD) allele
sharing. Comparison between the TDT and ASP test sta-
tistics was subsequently extended to more-general situa-
tions (e.g., see Camp 1997; McGinnis 1998). Meanwhile,
it has been pointed out that the statistical power for ge-
nomewide association studies using the TDT depends
strongly on the magnitude of the recombination fraction
and linkage disequilibrium (LD), the age of the mutant
disease allele (e.g., see Xiong and Guo 1998; Tu and Whit-
temore 1999), parental affected status (Whittaker and
Lewis 1998), and evidence of allelic heterogeneity of the
disease (Slager et al. 2000).

As pointed out by Schaid (1998), many recent
publications have been devoted to extending the use of
this popular method to more-complex situations. These
include the use of the TDT for (1) multiallele markers
(e.g., see Sham and Curtis 1995; Terwilliger 1995; Schaid
1996; Spielman and Ewens 1996; Cleves et al. 1997;
Kaplan et al. 1997; Lazzeroni and Lange 1998), (2) mul-
tiple markers (e.g., see Terwilliger 1995; Lazzeroni and
Lange 1998; Clayton and Jones 1999; Zhao et al. 2000),
and (3) situations in which parental-genotype informa-
tion may be absent (e.g., see Boehnke and Langefeld
1998; Horvath and Laird 1998; Schaid and Rowland
1998; Spielman and Ewens 1998; Knapp 1999). It is
worth noting that the TDT method and its recent exten-
sion are driven by hypothesis testing, since significant
TDT results imply both linkage and allelic association
(or LD) between the observed marker and the postulated
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Table 1

, Derived from Appendix B, for Some Selected Two-Locus Models from Neuman and RiceE[Y(t)FF]
(1992) and Risch (1990)

Model aE[Y(t)FF]

Neuman and Rice (1992):

Ep-1
2(1 � p )1

2 � p1

E-p-2 1 � p1

E-p-3 1 � p1

Ep-4
2(1 � p )2p (1 � p )1 1 2

2 22p � 2p p � p1 1 2 2

Ep-5
(1 � p )(2p � p � 3p p )1 1 2 1 2

2p � 2p � 3p p1 2 1 2

Ep-6
2 2(1 � p )p (1 � 2p )1 1 2

2 2 2 2p � 2p p � p1 1 2 2

Het-1
2 2(1 � p ) p [f (1 � p ) � gp (2 � p ) � f p (2 � p )]1 1 1 2 2 2 2 2 2

2 2gp p (2 � p )(2 � p ) � f p (1 � p ) (2 � p ) � f (1 � p ) p (2 � p )1 2 1 2 1 1 2 1 2 1 2 2

Het-2
2 2p (1 � p )[f (1 � p ) � p (2 � p )(g � f )]1 1 1 2 2 2 2

2 2 2 2gp p (2 � p ) � f p (1 � p ) � f (1 � p )p (2 � p )1 2 2 1 1 2 2 1 2 2

Het-3
2 2 2 2p (1 � p )(f � gp � f p � f p )1 1 1 2 1 2 2 2

2 2 2 2 2gp p � f p (1 � p ) � f (1 � p )p1 2 1 1 2 2 1 2

Risch (1990):

Multiplicative
p (1 � p )(a � 1 � p � 2ap � bp )1 1 1 1 1

2 2bp � 2ap (1 � p ) � (1 � p )1 1 1 1

Additive
p (1 � p )[a � p (b � 2a)]1 1 1

2 22ap (1 � p ) � bp � 2cp (1 � p ) � dp1 1 1 2 2 2

Heterogeneity
2p (1 � p ){(1 � 2cp )a � p (b � 2a) � (d � 2c)p [a(2p � 1) � p b]}1 1 2 1 2 1 1

2 2 2[dp � 2cp (1 � p )][1 � bp � 2ap (1 � p ) � bp � 2ap (1 � p )]2 2 2 1 1 1 1 1 1

a and ; H1and H2 are the disease alleles from loci 1 and 2, respectively.p p Pr (H ) p p Pr (H )1 1 2 2

disease gene. In fine-mapping applications, however, a
larger TDT result should not be directly interpreted as
being indicative of tighter linkage, as is done in some
studies (e.g., Whittaker et al. 2000). Rather, a marker
with higher heterozygosity for the target allele and, there-
fore, a larger number of informative parental genotypes
(i.e., the number of “discordant” pairs, or in theb � c

table of Spielman et al. [1993]) may result in a2 # 2
larger TDT value even though it is farther away from
the disease locus than is a less informative marker.

In this regard, two parallel approaches for the fine
mapping of disease genes, both of which are based on
the notion of LD, have been developed recently. One is
a likelihood-based approach in which the likelihood
function is indexed by LD parameters for a pair of
markers (e.g., see Hastbacka et al. 1992; Hill and Weir
1994; Kaplan et al. 1995; Terwilliger 1995; Xiong and
Guo 1997; Graham and Thompson 1998; Rannala and

Slatkin 1998; Zheng and Elston 1999). The second is
a semiparametric approach in which pairwise estimates
of LD are regressed on distances between the markers
(e.g., see Lazzeroni 1998; Cordell and Elston 1999).

In the present study we propose a new multipoint
method for estimating the location of an observed dis-
ease gene, t, when the case-parent trio design (a specific
form of family-based association) is adopted. Here “trio
design” refers to the situation in which an affected off-
spring, along with his or her parents, are genotyped for
multiple markers. This proposed method is robust in
that no assumption about the mode of inheritance is
required, other than the assumption that there is no
more than one disease gene in the chromosomal region
framed by the markers; rather, it builds on a represen-
tation of the expectation of a statistic reflecting pref-
erential transmission at arbitrary marker loci in the re-
gion. This approach provides a point estimate andˆ(t)
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Figure 1 Plots of E versus t, for 0�t�80 cM, where cM and is assumed to be equal to #[Y(t)FF] t p 45 Pr [h(t)Fh(t)] 1.0 � .01
. a, with different values of ; b, with different values of N.Ft � tF N p 10 C p E[Y(t)FF] C p .5

the variance around it, through use of the generalized
estimating equation (GEE) method (Liang and Zeger
1986), so that a 95% confidence interval for the loca-
tion of a disease gene may be calculated.

For illustration, this proposed method is applied to
a family study of asthma (Barnes et al. 1996, 1999).
Two-point and multipoint linkage analyses of 528 in-
dividuals in 33 families have provided evidence of link-
age between markers in the chromosome 12q15-q24.1
region and a susceptibility locus for asthma. As is true
for many linkage results for complex diseases, however,
the region of interest is quite broad (spanning 30–40
cM), and the addition of more markers failed to resolve
the location of any single locus controlling risk of
asthma, although several candidate genes have been
mapped to this region (Barnes et al. 1999).

Preferential-Transmission Statistics

Consider a case-parent trio recruited for an association
study in which a chromosomal region, R, is framed by
M genotyped markers at cM.0 ! t ! t ! , … , ! t ! T1 2 M

For simplicity, we assume two alleles per locus. We define
the preferential-transmission statistic Y(t), for any arbi-
trary location t in this region R, as .Y(t) p Y (t) � Y (t)1 2

Here

1 if the transmitted paternal allele at t is H(t)
Y (t) p ,1 {0 if the transmitted paternal allele at t is h(t)

1 if the nontransmitted paternal allele at t is H(t)
Y (t) p .2 {0 if the nontransmitted paternal allele at t is h(t)

(1)

In equation (1), H(t) is the target allele at marker t, and
h(t) is the nontarget allele. Likewise, one can define the
maternal version of this statistic as ,X(t) p X (t) � X (t)1 2

accordingly. For simplicity, we shall focus attention on
Y(t), but all of the following developments apply com-
pletely to X(t). Note that Y(t) takes three possible values:
1, 0, and �1. If the father is heterozygous at marker
t—that is, Hh at position t—then Y(T) would be 1 or �1,
depending on whether the transmitted allele is H(t) or
h(t), respectively; on the other hand, Y(t) is equal to 0 if
the father is homozygous—that is, HH or hh—at position
t. It is intuitively clear that, when marker t is either un-
linked to or in linkage equilibrium with the disease gene
located at position t, Y(t) is, on average, equal to 0, since
the observable alleles H(t) and h(t) from the parents have
an equal chance of being transmitted to the offspring. It
is also interesting to point out that the sum of Y(t) �

across trios simplifies to , the numerator of theX(t) b � c
original TDT statistic (Spielman et al. 1993). The next
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Figure 2 Plots of E versus t, for 0�t�80 cM, where cM and is generated from a uniform distribution over[Y(t)FF] t p 45 Pr [h(t)Fh(t)]
(.5, 1.0). a, with different values of C; b, with different values of N.N p 10 C p .5

representation of Y(t)—and, hence, of X(t)—is critical for
the subsequent development. Let F denote the event that
the sampled offspring is affected; then one has

E[Y(t)FF] p (1 � 2v )E[Y(t)FF]d(t) , (2)t,t

where vt,t is the recombination fraction between marker
locus t and the location (t) of the postulated disease gene
in the region, and

d(t) p Pr [H(t)FH(t)] � Pr [H(t)Fh(t)] (3)

serves as a measure of LD between t and t. The proof of
equation (2) is given in Appendix A, in which the key
assumption—that is, that there is no more than one sus-
ceptibility gene in region R—is made. As defined earlier,
H(t) and h(t) represent the high-risk allele and normal
allele, respectively, for the disease gene at location t. Note
that and that d(t) in equation (3) correspondsd(t) p 1
to one of the five measures of LD discussed by Devlin
and Risch (1995); that is,

Pr [H(t) and H(t)] � Pr [H(t)] Pr [H(t)]
d(t) p

Pr [H(t)] Pr [h(t)]

D(t)
{ ,

p(1 � p)

which is the difference in probabilities that H(t) will be
observed at marker t for those carrying the high-risk allele
and normal allele at the disease locus t. This preferential-
transmission statistic, Y(t), is, on average, equal to 0 if
marker t is either unlinked to the disease locus (i.e.,

or is in linkage equilibrium with the disease locus1v p )t,t 2

(i.e., ). Furthermore, under the assumptions ofD(t) p 0
initial complete LD, random mating, and constant
Pr[H(t)] over time, d(t) can also be expressed, as has been
done elsewhere (Devlin and Risch 1995), as

Nd(t) p (1 � v ) Pr [h(t)Fh(t)] ,t,t

which has been regarded as a reasonable model with a
long history. Here N is the number of generations since
the introduction, into the population, of a disease-causing
mutation at location t. Thus, one can express E[Y(t)FF]
from equation (2) as
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Table 2

Frequencies of Trios per Family in the Family Study of Asthma
(Barnes et al. 1996), Stratified by Availability of Parental Marker
Information

NO. OF TRIOS

PER FAMILY

NO. OF

FAMILIES

PARENTAL MARKER INFORMATION

Both
Available

Maternal
Only

Paternal
Only

1 2 0 2 0
2 7 11 3 0
3 9 21 6 0
4 3 7 5 0
5 4 13 6 1
6 3 12 5 1
7 2 9 5 0
8 3 13 11 0

Total 33 86 43 2

Figure 3 TDT values for the 22 markers on chromosome 12 from the family study of asthma (Barnes et al. 1996). The solid line (—)
denotes the conventional TDT; the dashed line (- - -) denotes the modified TDT.

E[Y(t)FF] p (1 � 2v )E[Y(t)FF]t,t

N(1 � v ) {Pr [h(t)Fh(t)]} . (4)t,t

Another implicit assumption that must be made for the
aforementioned equality to hold is that the population is
large and stable in size (e.g., see Hill and Weir 1994;
Kaplan et al. 1997; Rannala and Slatkin 1998; Sham
1998). We will discuss the impact of evolutionary vari-

ability on equation (4), as well as the proposed method
for making inferences about t, in the Discussion section.

It is clear from equations (3) and (4) that the statistical
power of the TDT depends strongly on (1) how tight the
linkage between loci t and t is, vt,t; (2) the magnitude of
LD, D(t); (3) the age of the mutant allele—that is, N; (4)
the allele frequency of the nontarget allele at locus t—that
is, ; and (5) the true genetic mechanism,Pr [h(t)Fh(t)]
through . For this last component, table 1 gives,E[Y(t)FF]
under the conventional Hardy-Weinberg assumption, ex-
pressions for , for a variety of single-locusC { E[Y(t)FF]
and two-locus models (Risch 1990; Neuman and Rice
1992). In particular, assuming a single-locus model with
arbitrary penetrances f0, f1, and f2, for genotypes HH,
Hh, and hh at the trait locus, respectively, one has

p(f � f ) � (1 � p)(f � f )0 1 1 2E[Y(t)FF] p p(1 � p) .2 2p f � 2p(1 � p)f � (1 � p) f0 1 2

(5)

Substitution of equation (5) for in equation (2)E[Y(t)FF]
leads to an expression for that can be repro-E[Y(t)FF]
duced from table 3 of Knapp et al. (1993). In the special
case of recessive models with complete penetrances—that
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Figure 4 Number of allele transmissions from heterozygous parents, for the 22 markers on chromosome 12 from the family study of
asthma (Barnes et al. 1996).

is, when and (Ott 1989)—f p 1 f p f p 0 E[Y(t)FF]0 1 2

will reduce to and1 � p

(1 � 2v )D(t)t,tE[Y(t)FF] p
p

p (1 � 2v ){Pr [H(t)FH(t)] � Pr [H(t)]} , (6)t,t

which can also be derived from table II of Ott (1989).
On the basis of equation (6), it appears that the statistical
power of the TDT is inversely proportional to the dif-
ference in that equation, at least for single-locus recessive
models. Furthermore, the statistical power for detection
of linkage or LD diminishes considerably if this single
disease locus is dominant—that is, if andf p f p 10 1

, as in this case:f p 02

2(1 � p) (1 � p)
E[Y(t)FF] p ! .

2 � p 2

As shown in table 1, with a few exceptions the statistical
power of this approach is reduced for the two-locus mod-
els introduced by Risch (1990) and Neuman and Rice
(1992), since is generally smaller for the two-E[Y(t)FF]
locus models than it is for the single-locus models.

If we return to equation (4), it becomes clear that

, when considered as a function of t, reachesE[Y(t)FF]
its peak at —that is, when . Thus, whenE[Y(t)FF] t p t

multiple-marker information is available for calcula-
tion of these Y values, one is able to estimate the lo-
cation of t at the peak value of . This is theE[Y(t)FF]
main subject of the next section. When the marker is
away from the disease locus—that is, when —thet ( t

average of this preferential-transmission statistic, Y(t),
diminishes rather quickly. As an illustration, consider,
for ,t ( t

E[Y(t)FF] Np (1 � 2v )(1 � v ) Pr [h(t)Fh(t)]t,t t,tE[Y(t)FF]
N� (1 � 2v )(1 � v ) . (7)t,t t,t

Therefore, for —that is, when marker t is 1 cMv p .01t,t

away from t— is !59% of if the mu-E[Y(t)FF] E[Y(t)FF]
tation occurred generations ago. This ratio inN ≈ 50
equation (7) drops to !7.0% if marker t is 5 cM away
from t—that is, if . Two implications of thisv p .05t,t

observation are worth noting. First, from the hypothesis-
testing viewpoint, the statistical power of the TDT will
be severely compromised when marker t is well away
from disease locus t (e.g., see Terwilliger and Ott 1992;
Xiong and Guo 1998; Tu and Whittemore 1999); on the
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Figure 5 Empirical and fitted values for the expected preferential-transmission statistics for the 22 markers on chromosome 12 from the
family study of asthma (Barnes et al. 1996). The solid line (—) denotes the empirical E ; the dashed line (- - -) denotes the empirical(Y(t)FF)
E ; the dotted line (…) denotes the fitted E[Y(t)FF]/ Pr [h(t)Fh(t)] [Y(t)FF]/ Pr [h(t)Fh(t)].

other hand, from the viewpoint of estimation of t, such
a sharp drop in relative to providesE[Y(t)FF] E[Y(t)FF]
an excellent opportunity to differentiate t from nearby
markers. Our proposed method, presented in the next
section, capitalizes on this sharp decline in fromE[Y(t)FF]

, since our focus is on estimating the location of thet p t

postulated disease locus t. However, one complication
associated with the use of equation (4) is that E[Y(t)FF]
is not necessarily a decreasing function in , sinceFt � tF

may not be monotonic. Figures 1 and 2 showPr [h(t)Fh(t)]
plots of versus t, for some selected values ofE[Y(t)FF]
N and . In figure 1, we assume thatC { E[Y(t)FF]

, the value of whichPr [h(t)Fh(t)] p 1.0 � .01 # Ft � tF
is decreasing in . In this case, decreasesFt � tF E[Y(t)FF]
with , and the magnitude of N appears to haveFt � tF
a stronger impact, compared with C, on how sharply

declines. In figure 2, we assume, instead, thatE[Y(t)FF]
is random and that it follows a uniformPr [h(t)Fh(t)]

distribution over (.5, 1). In this more realistic case, the
predicted curves are not as smooth, and they fluctu-
ate wildly before eventually approaching 0 as t moves
away from t. Nevertheless, it is important to reiter-
ate that the peak of is always attained atE[Y(t)FF]

. Furthermore, when equation (4) is divided byt p t

, we see that E[Y(t)FF]/ Pr[h(t)Fh(t) ] pPr [h(t)Fh(t)]
which does decrease with ,N(1 � 2v )(1 � v ) C, Ft � tFt,t t,t

and both quantities in this ratio can be estimated con-
sistently as long as sufficient trios are available.

The Proposed Method

Consider a situation in which n independent case-parent
trios are sampled and the paternal and maternal prefer-
ential-transmission statistics—Yi(tj) and Xi(tj), respec-
tively—are computed at each of M markers located at

. Recall from equation (4)t ! t ! , … , ! t , i p 1, … , n1 2 M

that

E[Y (t )FF] p E[X (t )FF]i j i j

Np (1 � 2v )C(1 � v ) # pt,t t,t j

p m(t ; t, C, N, p ) , (8)j j

where and pj p ,C p E[Y(t)FF] p E[X(t)FF] Pr[h(t )Fh(t)]j

. Therefore, the averaged preferential-trans-j p 1, … , M
mission statistics at location tj are indexed by d p

and by pj, which is the probability that the non-(t, C, N)
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Figure 6 Estimated for the 22 markers on chromosome 12 from the family study of asthma (Barnes et al. 1996)Pr [h(t)Fh(t)]

target allele will be carried at marker tj, given the normal
allele at the disease locus. One can replace pj in equation
(8) with , based either on current knowledge derivedp̂j

from previous work or on the data at hand; for instance,

n� [1 � Y (t ) � 1 � X (t )]i2 j i2 j
ip1

p̂ p , (9)j 2n

which is the proportion of nontransmitted parental alleles
that carry h(tj). This estimator, which is similar to that
proposed by Lazzeroni (1998), is valid for an autosomal
dominant mechanism when the disease is rare. The re-
maining question is how to estimate —ind p (t, C, N)
particular, t—given that one observes, for each trio, pa-
ternal and maternal preferential-transmission statistics at
each of the M locations in chromosomal region R. One
approach is to estimate d by solving

n ˆ�m(d,p)
�1 ˆS(d) p Cov (Y ){Y � m(d,p)}� i i[ �dip1

ˆ�m(d,p)
�1 ˆ� Cov (X ){X � m(d,p)} p 0 , (10)i i ]�d

where

′[ ]Y p Y (t ) � Y (t ), … ,Y (t ) � Y (t ) ,i i1 1 i2 1 i1 M i2 M

′[ ]X p X (t ) � X (t ), … ,X (t ) � X (t ) ,i i1 1 i2 1 i1 M i2 M

and

′ˆ ˆ ˆ[ ]m(d,p) p m(t ; d,p ), … ,m(t ; d,p ) .1 1 M M

This generalized–estimating-equation (GEE) approach
was originally proposed by Liang and Zeger (1986) for
the analysis of longitudinal data in which repeated ob-
servations of primary-response variables are measured
over time for each subject. This approach recently has
been applied to multipoint linkage analysis of sib pairs,
for qualitative traits (Liang et al. 2001) and for quanti-
tative traits (Liang et al. 2000). This GEE method may
be viewed as an extension of the conventional method of
moments, since it incorporates the empirical and theo-
retical first moments of primary statistics (Yi and Xi, in
this case). It has the desired property that the derived
estimates of d and their estimated standard errors (SEs)
remain valid as long as equation (8) holds up. One minor
modification is needed, since m(tj) in equation (8) is not
differentiable with respect to t, since it involves ,Ft � tFj

the absolute value (for detailed discussion on how this
modification takes place, see the study by Liang et al.
[2001]).
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Table 3

Estimates and SEs of t, C, and N, for the Family Study of
Asthma (Barnes et al. 1996)

Parameter Estimate � SE

Location of disease locus (t) 38.71 � 1.417
Averaged preferential transmission at t (C) .221 � .078
Number of generations since mutation (N) 14.16 � 8.673

One interesting feature of this approach is that one
can test the null hypothesis—of no linkage or LD to the
region framed by the observed M markers—by testing

. In contrast to the situation when the TDT isC { 0
performed separately for each marker, the statistical
power for detection of linkage or LD should be en-
hanced when all marker information from the framed
region is used simultaneously, through modeling, in
equation (4). In addition, instead of assuming that

, one could test the hypoth-E[Y(t)FF] p E[X(t)FF] { C
esis of, for example, equal parental transmission, by
allowing these two quantities to be different and to be
compared empirically.

This proposed approach is flexible in that it accom-
modates situations in which genetic information is
available from only one parent or in which more than
one affected offspring are recruited from the same fam-
ily. For the latter case, each affected offspring contrib-
utes separately to equation (10). The GEE method pro-
vides valid standard-error estimates of , the value ofd̂

which is estimated in equation (10), while acknowledg-
ing that contributions from both parents and from af-
fected siblings are not statistically independent of each
other. These standard-error estimates of are, however,d̂

subject to modification because of the complication that
the pj values, for in equation (8) are un-j p 1, … , M
known and need to be estimated by, for example, inp̂j

equation (9). Without proper modification, this would
lead to underestimation of the SE in . Such a modifi-d̂

cation, which is given in Appendix B, has been imple-
mented in our statistical software, which, when it is
complete, will be available from the author.

Finally, we note that use of the TDT may be invalid
if more than one case-parent trio from a family con-
tributes to the computation of these TDT statistics.
This, however, can be modified by considering, for each
marker (e.g., see Martin et al. 2000),

I n 2i� � Z( )ij
ip1 jp1

T p , (11)I n 2i� � Z( )ij
ip1 jp1

where I is the number of families ascertained, ni is the
number of observed allele transmissions, forZ p Y(X)
paternal (or maternal) transmission, and .i p 1, … , I

One can refer T to a x2 distribution with 1 df, when I
is sufficiently large.

An Illustrative Example

To illustrate how this proposed method may be applied
to multipoint family-based association studies, we have
applied it to a family study of asthma in Barbados (Barnes
et al. 1999). In this study, 507 subjects (8 nuclear and 25
extended pedigrees) were recruited in Barbados (the study
was originally described by Barnes et al. [1996]). Nuclear
families were selected through an asthmatic proband. Pa-
tients with asthma were selected systematically, from ei-
ther the Accident and Emergency Department at the
Queen Elizabeth Hospital or from private-practice clinics,
on the basis of the following inclusion criteria: (1) patient
age 16 years, (2) diagnosis, by a physician, of current
asthma, and (3) availability of both parents or, in the case
of a missing parent, siblings (to infer the genotype of a
missing parent). Every effort was made to include all nu-
clear-family members, and pedigrees were extended be-
yond the nuclear family whenever possible and included
all extended relatives who were willing to participate over
a recruitment period of 3 years (1993–96). Twenty-two
polymorphic microsatellite markers spanning a region of
∼80 cM on 12q13.12-q.23.3 (D12S390–D12S360) were
typed for all subjects with available DNA, as described
elsewhere (Barnes et al. 1996). All participants gave their
informed consent as approved by the Johns Hopkins Uni-
versity institutional review board. This study population
provided 131 case-parent trios from 33 families; 45 of
the trios are missing either paternal or maternal genotypic
information; for details on these trios, see table 2.

Figure 3 shows the TDT values for each of 22 markers
spanning 80 cM along this region of chromosome 12.
For markers with more than two alleles and without a
targeted allele specified a priori, we report the maximum
TDT values when other alleles are combined. We note
that such an approach to the identification of the target
alleles does not compensate for the multiple compari-
sons. This TDT curve, shown in figure 3, appears bi-
modal, with local peaks at markers 8 (D12S1598) and
19 (PAH). A tempting question is whether such local
peaks would necessarily lead to a consistent estimate of
the location of the unobserved disease locus t. Recall
that

2
b 1�[ ]b�c 22(b � c)

TDT p p ,
1b � c

4(b�c)

where is the number of heterozygous parental ge-b � c
notypes that vary across markers (because of varying
allele frequencies). Figure 4 shows that values(b � c)
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vary vastly, in a range of 20–100, for these 22 markers
on chromosome 12. Thus, one should use caution when
interpreting, from the fine-mapping perspective, the
TDT curve shown in figure 3. The dotted line in figure
3 gives the T curve calculated by equation (11). There
is a substantial drop in test-statistic values (especially
for markers 8 and 19), reflecting the nontrivial effect
due to the lack of statistical independence among af-
fected siblings from a single mating.

To avoid the concern of varying values across(b � c)
markers, figure 5 shows the empirical version of

; that is,m(t ) p E[Y(t )FF], j p 1, … , Mj j

n� [Y (t ) � X (t )]i j i j
ip1

m̂(t ) p , (12)j 2n

and of the ratio , where is defined in equationˆ ˆm̂(t )/p pj j j

(9) and given in figure 6. Note that, unlike convention-
al TDT statistics, equation (12) uses all available mark-
er data, regardless of whether the parental genotypes
are heterozygous. Furthermore, this empirical version
of —that is, —Nm(t )/p m(t )/p p (1 � 2v )C # (1 � v )j j j j t,t t,t

suggests that it does decrease with through theFt � tF
subregions framed by markers 6–12 and 18–22. Taking
into account the previous evidence for linkage in the
neighborhood of marker 7, we applied the GEE method
by fitting the model in equation (4) to the preferential-
transmission statistics for markers 6–12. The results in
table 3 suggest strong evidence of linkage and LD in
this 18-cM subregion ( with2ˆ ˆC /Var(C) p 7.98 P p

. This is to be contrasted with the peak individual.005)
TDT value of 5.24 ( ) at marker 9 (D12S1667)P p .022
in this subregion. Furthermore, the postulated disease
locus for asthma is estimated to be located at t̂ p

, with a 95% confidence interval of 35.93–41.4938.71
(see fitted curve in fig. 5). It is worth noting that, in
general, more-dense maps (with markers !3–4 cM
apart) may be needed for LD mapping.

Discussion

Family-based association studies using the TDT to test
for linkage and LD have drawn a great deal of attention
lately. This approach recently has been advocated for
genomewide searches (Risch and Merikangas 1996),
rather than simply as a tool for detection of associations
with candidate genes. Recent work by many researchers
has extended this approach to more-general settings for
practical usage. The rapid development of molecular
technology for single-nucleotide polymorphisms (SNP)
should further encourage adoption of this design for
future genetic studies of complex diseases, because dense
maps should become more easily available.

In the present study, we propose a multipoint fine-

mapping approach that is suitable for the case-parent
trio design. Through modeling, as presented in equa-
tions (2) and (4), this approach provides a method that,
for the testing of linkage and LD, is potentially more
powerful than what is available with individual TDT
using one marker at a time. In addition, it provides an
estimate of the location of the postulated disease gene,
, along with its SE. Another feature of the proposedt̂

method is that it utilizes the marker data from all trios,
regardless of whether the parental genotypes are het-
erozygous. This is in contrast to the conventional TDT
approach, in which only trios with heterozygous parents
are informative for testing the null hypothesis of no
linkage or no LD. In addition, it accommodates prac-
tical situations in which there may be more than one
affected offspring observed from a single mating or in
which some parental genetic information is unavailable.

An important assumption required if equation (4) is
to be valid is that the population is large and stable in
size, so that no evolutionary variability exists. Several
authors (e.g., Hill and Weir 1994; Kaplan et al. 1997;
Rannala and Slatkin 1998) have argued that this varia-
bility must be taken into account. In Appendix C, we
show that, in the presence of evolutionary variability,
equation (4) is modified as follows: pE[Y(t)FF] (1 �

, where aN is the propor-N2v )E[Y(t)FF]a (1 � v ) p(t)t,t N t,t

tion of H(t), in generation N, that is descended from the
founder population. Therefore, and aN areC { E[Y(t)FF]
confounded with each other in such a way that only

is estimable from the data at hand. Since�C p C # aN

aN is !1 unless the population is large and stable in size,
both the statistical power for detection of linkage and
LD and the statistical precision for estimation of t are
compromised. Given that C� appears in as aE[Y(t)FF]
proportional factor, our method ensures that is consis-t̂

tent in its estimation of t, the location of a disease locus
in the target region. However, since the proposed method
is based on samples from the current population, the SE
of and the corresponding 95% confidence interval fort̂

t are likely to be smaller than they should be, since our
method fails to take into account the variation, in pop-
ulation allele frequency, caused by evolution.

Previously (Barnes et al. 1999), we have observed
significant evidence of linkage over a very large region
(∼40 cM) of chromosome 12q. However, linkage anal-
ysis is dependent on informative matings, and it can be
difficult, in any one set of families, for complex diseases
such as asthma, to narrow the regions of interest. In-
terestingly, the best evidence for linkage in the Barbados
data set (Barnes et al. 1999) is in precisely the same
subregion reported for linkage and LD in the present
study, confirming our prior report. Previous TDT anal-
yses of individual markers in this data set resulted in
modest P values for several of the markers, with the
best evidence for linkage at D12S95 (Barnes et al. 1996),
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a locus some distance from the region of strongest ev-
idence of linkage determined by other methods (Barnes
et al. 1999).

Application of the proposed method to a family study
of asthma illustrates how this method can be used for
fine mapping after prior evidence of linkage has been
seen, but the method is also applicable to general studies
of candidate genes or even genomewide scans. In the
context of this family study of asthma, multiplex families
ascertained through affected sibs provided a number of
nonindependent trios for analysis. Some trios involved
double counting of both parents (e.g., two trios from an
affected sib pair), some involved double counting of only
one parent (e.g., two trios involving an affected half-sib
pair), and some trios had one parent with no genotype
data available. The weighting of trios drawn from a single
nuclear family, as shown in equation (11), adjusts for the
lack of independence among trios, which (as demon-
strated in fig. 3) can lead to inflated TDT values when
each marker is considered individually. The utility of our
approach for fine mapping arises from both the estimated
map location provided and its accompanying confidence
intervals. This can be quite useful in the narrowing of
chromosome regions where linkage has been identified
in a previous analysis. For many studies of complex dis-

eases, multipoint linkage analysis yields positive results
over fairly large chromosomal regions. Frequently, ad-
dition of markers does not narrow the region of interest
sufficiently to make detailed molecular studies feasible,
since regions of 10–20 cM often contain too many in-
dividual genes over too great a physical distance to permit
direct identification of a causal gene. This multipoint ap-
proach to mapping, based on case-parent trios drawn
from multiplex families, allows a higher degree of reso-
lution and better establishes the key region for physical
mapping.
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Appendix A

Proof of Equation (2)

Let (g1, g2) denote the paternal (g1) and maternal (g2) haplotypes for the father of an affected offspring at loci t
and t. Thus, [H(t)H(t), H(t)h(t)], for example, represents 1 of 10 such possible combinations at loci t and t. For
the paternal preferential-transmission statistic at location t—that is, —one hasY(t)

E[Y(t)FF] p E[Y (t) � Y (t)FF] p Pr [Y (t) p 1FF] �Pr [Y (t) p 1FF]1 2 1 2

p {Pr [Y (t) p 1Fg ,g ,F] �Pr [Y (t) p 1Fg ,g ,F]} Pr (g ,g FF)� 1 1 2 2 1 2 1 2
(g ,g )1 2

p {Pr [Y (t) p 1,Y (t) p 1Fg ,g ,F] �Pr [Y (t) p 1,Y (t) p 0Fg ,g ,F]� 1 1 1 2 1 1 1 2
(g ,g )1 2

�Pr [Y (t) p 1,Y (t) p 1Fg ,g ,F] �Pr [Y (t) p 1,Y (t) p 0Fg ,g ,F]} Pr (g ,g FF)2 1 1 2 2 1 1 2 1 1

p {Pr [Y (t) p 1FY (t) p 1,g ,g ,F]b(g ,g ) �Pr [Y (t) p 1FY (t) p 0,g ,g ,F][1 � b(g ,g )]� 1 1 1 2 1 2 1 1 1 1 1 2
(g ,g )1 2

�Pr [Y (t) p 1FY (t) p 1,g ,g ,F]b(g ,g ) �Pr [Y (t) p 1FY (t) p 0,g ,g ,F][1 � b(g ,g )]} Pr (g ,g FF) , (A1)2 1 1 2 1 2 2 1 1 2 1 2 1 2

where , which is the conditional probability that the transmitted allele at diseaseb(g ,g ) p Pr [Y (t) p 1Fg ,g ,F]1 2 1 1 2

locus t is H(t). With the exceptions of and , it easily can be shown� ��g p [H(t)h(t), h(t)H(t)] g p [H(t)H(t), h(t)h(t)]
that the terms within the bracket of (A1) cancel each other out. Consequently,

� � � � �E[Y(t)FF] p {v b(g ) � (1 � v )[1 � b(g )] � (1 � v )b(g ) � v [1 � b(g )]} Pr (g FF)t,t t,t t,t t,t

�� �� �� �� ���{(1 � v )b(g ) � v [1 � b(g )] � v b(g ) � (1 � v )[1 � b(g )]} Pr (g FF)t,t t,t t,t t,t

�� �p (1 � 2v ){2 Pr [Y (t) p 1FH(t),h(t),F] � 1}[Pr (g FF) � Pr (g FF)] . (A2)t,t 1
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Here, under the assumption that there is no locus other than the disease locus in the region R, we have

�b(g ) p Pr [Y (t) p 1FH(t)h(t),h(t)H(t),F] p Pr [Y (t) p 1Fh(t),H(t),F]1 1

��p Pr [Y (t) p 1FH(t)H(t),h(t)h(t),F] p b(g ) ,1

which leads to equation (A2). Furthermore, under the same assumption mentioned above, one has

� ��Pr (FFg ) p Pr (FFg ) p Pr [FFH(t),h(t)]

and, hence,

Pr [FFH(t),h(t)]
�� �Pr (g FF) � Pr (g FF) p {Pr [H(t)H(t),h(t)h(t)] � Pr [H(t)h(t),h(t)H(t)]}

Pr (F)

Pr [FFH(t),h(t)]
p # D(t) p Pr [H(t),h(t)FF]d(t) .

Pr (F)

Consequently,

E[Y(t)FF] p (1 � 2v ){2 Pr [Y (t) p 1FH(t),h(t),F] � 1} Pr [H(t),h(t)FF]d(t)t,t 1

p (1 � 2v )E[Y(t)FF]d(t) ,t,t

and this completes the proof.

Appendix B

Incorporation of Uncertainty in the Estimation of pj

To account for the uncertainty due to the need to estimate the pj values for , one can simultaneouslyj p 1, … , M
estimate and by solvingd p (t,C,N) p p (p , … , p )1 M

n
�m(d,p) �m(d,p)

�1 �1S (d,p) p Cov (Y )[y � m(d,p)] � Cov (X )[y � m(d,p)] p 0�1 i i i i{ }�d �dip1

n

S (p) p (1 � Y � 1 � X � 2p) p 0 ,�2 i2 i2
ip1

where 1 is a vector of ones, andM # 1

′[ ]Y p Y (t ), … , Y (t )i2 i2 1 i2 M

′[ ]X p X (t ), … , X (t ) .i2 i2 1 i2 M

By solving S1 and S2 simultaneously, one can derive an estimate, of the SE of , that takes into account the uncertaintyd̂

in ; for detailed derivations, see, for example, reports by Prentice (1988) and Liang et al. (1992).p̂

Appendix C

Impact of Evolutionary Variability on Equation (4)

Define , the basic measure of LD at generation N. AcknowledgingD (t) { P [H(t) and H(t)] � P [H(t)]P [H(t)]N N N N

that aN—that is, the proportion of H(t), in generation N, that are descended from the founder disease allele—varies
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across generations, because of evolutionary variability (e.g., fresh mutation and change in population size), Sham
(1998) showed that

ND (t) p {P [H(t)FH(t)] � P [H(t)]}P [H(t)] p {1 � P [H(t)]}(1 � v ) a # P [H(t)] .N N N N 0 t,t N N

One has

[ ]a P H(t)N ND (t)N N Np (1 � v ) ≈ (1 � v ) a ,t,t t,t N[ ]D (t) P H(t)0 0

under the assumption of constant disease-allele frequency from generation to generation. Thus, unless ,a p 1N

which would be the case when the population size is sufficiently large, has the form ofE(Y(t)FF)

N � NE[Y(t)FF] p (1 � 2v )E[Y(t)FF]a (1 � v ) p(t) p (1 � 2v ) # C (1 � v ) p(t) ,t,t N t,t t,t t,t

where . Since , both the statistical power for detection of linkage and LD� �C p E[Y(t)FF] # a C ! C { E[Y(t)FF]N

and the statistical precision for estimation of t are compromised.
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